SOLVING LINEAR PROGRAMMINGPROBLEM BYINVERSE OF SUB MATRIX
نویسندگان
چکیده
منابع مشابه
Solving LR fuzzy linear matrix equation†
In this paper, the fuzzy matrix equation $Awidetilde{X}B=widetilde{C}$ in which $A,B$ are $n times n$crisp matrices respectively and $widetilde{C}$ is an $n times n$ arbitrary LR fuzzy numbers matrix, is investigated. A new numerical procedure for calculating the fuzzy solution is designed and a sufficient condition for the existence of strong fuzzy solution is derived. Some examples are ...
متن کاملSolving Linear Matrix Equations by Matrix Decompositions
In this paper, a system of linear matrix equations is considered. A new necessary and sufficient condition for the consistency of the equations is derived by means of the generalized singular-value decomposition, and the explicit representation of the general solution is provided. Keywords—Matrix equation, Generalized inverse, Generalized singular-value decomposition.
متن کاملA matrix LSQR algorithm for solving constrained linear operator equations
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$ and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$ where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$, $mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$, $ma...
متن کاملSOLVING FUZZY LINEAR SYSTEMS BY USING THE SCHUR COMPLEMENT WHEN COEFFICIENT MATRIX IS AN M-MATRIX
This paper analyzes a linear system of equations when the righthandside is a fuzzy vector and the coefficient matrix is a crisp M-matrix. Thefuzzy linear system (FLS) is converted to the equivalent crisp system withcoefficient matrix of dimension 2n × 2n. However, solving this crisp system isdifficult for large n because of dimensionality problems . It is shown that thisdifficulty may be avoide...
متن کاملFinite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: INTERNATIONAL JOURNAL OF ADVANCED SCIENTIFIC AND TECHNICAL RESEARCH
سال: 2020
ISSN: 2249-9954
DOI: 10.26808/rs.st.10v6.01